

EDGEWOOD

CHEMICAL BIOLOGICAL CENTER

U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND

ECBC-TR-405

TEST RESULTS OF AIR-PERMEABLE SARATOGATM HAMMER SUIT TO CHALLENGE BY CHEMICAL WARFARE AGENTS

Elaina H. Harrison Suzanne A. Procell Michael J. Gooden

RESEARCH AND TECHNOLOGY DIRECTORATE

Adam D. Seiple

ENGINEERING DIRECTORATE

October 2004

Approved for public release; distribution is unlimited.

20050322 115

Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of Information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Valid OMB Control number. FLEASE DO NOT RETORN TO	A DEDARKED AND THE PARTY OF THE	A DATES SOUTHER (Farmer Ta)				
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)				
XX-10-2004	Final	Jul 2003 - Dec 2003				
4. TITLE AND SUBTITLE	em ¢	5a. CONTRACT NUMBER				
Test Results of Air-Permeable Sa	aratoga TM Hammer Suit to Challenge by					
Chemical Warfare Agents		5b. GRANT NUMBER				
	5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)		5d. PROJECT NUMBER				
	anne A.; Gooden, Michael J.; and	None				
Seiple, Adam D.	5e. TASK NUMBER					
		5f. WORK UNIT NUMBER				
•	s) and address(es) and address(es) CB-RT-AT/AMSRD-ECB-ENE-M,	8. PERFORMING ORGANIZATION REPORT NUMBER ECBC-TR-405				
9. SPONSORING / MONITORING AGENCY DIR, ECBC, ATTN: AMSRD-E	name(s) and address(es) CB-ENH, APG, MD 21010-5424	10. SPONSOR/MONITOR'S ACRONYM(S)				
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION / AVAILABILITY STATE Approved for public release; distribution						

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Swatches from an air-permeable Tex-Shield SARATOGATM Hammer Suit were challenged with liquid droplets of sarin (GB) and mustard (HD) using modifications of the convective permeation test procedure described in TOP 8-2-501. The cumulative mass of each agent that permeated each swatch was determined over time. The results for all swatches were used to determine a weighted-average cumulative mass for the suit. From that data, a physiologically derived breakthrough time was calculated for comparison purposes.

15. SUBJECT 1 HD GB		ch testing	Permeation	n testing	Chemical protective suit				
16. SECURITY	CLASSIFICATION O	F:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Sandra J. Johnson				
a. REPORT	b. ABSTRACT	c. THIS PAGE	7		19b. TELEPHONE NUMBER (include area code)				
U	U	U	UL	46	(410) 436-2914				

EXECUTIVE SUMMARY

As part of the Domestic Preparedness Program, an air-permeable, charcoal impregnated SARATOGATM Hammer Suit from Tex-Shield, Incorporated, was tested to assess its capability to protect in a chemical warfare (CW) agent environment. Swatches of material from the suit were tested for resistance to permeation by mustard (HD) and sarin (GB). From that data, the authors calculated the estimated time it would take for sufficient agent to permeate the suit to cause physiological effects in a person wearing the suit. The tests are described and the calculated breakthrough times are presented. The overall breakthrough time was >396 min for GB and 253 min for HD.

This suit was also tested to assess its ability to protect the wearer from an aerosolized threat. Human test subjects donned the suit and entered a corn oil aerosol chamber. The subjects then performed a series of exercises to stress the seals of the suit. A continuous sample was pulled from the suit and analyzed by a laser photometer to see if any corn oil aerosol had entered the suit. Of the trials tested, 93.75% had an overall protection factor (PF) > 2.0, while none had an overall PF > 5.0. All overall protection factors were between 1.9 and 3.4.

PREFACE

The work described in this report was authorized under the Expert Assistance (Equipment Test) Program for the U.S. Army Edgewood Chemical Biological Center (ECBC) Homeland Defense Business Unit. This work was started in July 2003 and completed in December 2003.

The use of either trade or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for public release. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service.

CONTENTS

1.	INTRODUCTION	11
2.	OBJECTIVES	11
3.	TESTING AND DATA ANALYSIS	11
3.1	Testing Overview	
3.2	Liquid Challenge/Vapor Permeation Testing (Agent Swatch Testing)	12
3.2.1	Liquid Challenge/Vapor Permeation Testing Procedure	13
3.2.2	Liquid Challenge/Vapor Permeation Testing Analysis	
3.2.3	Relationship of Liquid Challenge/Vapor Permeation Test Results	
	to Skin Exposure	15
3.2.4	Evaluation Criteria for Liquid Challenge/Vapor Permeation Test Results	16
3.3	Protection Factor (Aerosol) Testing	17
3.3.1	Protection Factor Testing Procedures	
3.3.2	Protection Factor Data Analysis Method	
4.	RESULTS AND DISCUSSION	19
4.1	Swatch Test Results	19
4.2	Aerosol Test Results	
4.3	Discussion of Results	
	ACRONYMNS AND ABBREVIATIONS	21
	APPENDIXES	
	A - MODIFIED CONVECTIVE PERMEATION TEST PROCEDURE	23
	B - TEST RESULTS	25
	C - SARATOGA TM HAMMER SUIT PHOTOS	29
	D - NEGATIVE/POSITIVE CONTROL AND INDIVIDUAL TEST DATA	31
	E - PROTECTION FACTOR TEST DATA	45

FIGURES

1.	SARATOGA TM Hammer Suit Instruction Manual and Suit Labels	12
2.	Permeation Apparatus and Test Cells	14
3.	MINICAMS TM and Stream Selection System (SSS)	14
B-1.	SARATOGA TM Hammer Suit - Weighted Average HD Permeation	27
B-2.	SARATOGA TM Hammer Suit - Weighted Average GB Permeation	27
B-3.	SARATOGA TM Hammer Suit - HD Permeation by Sampling Area	28
B-4.	SARATOGA TM Hammer Suit - GB Permeation by Sampling Area	28
C.	SARATOGA TM Hammer Suit Coat and Trousers	29
	TABLES	
1.	Agent Breakthrough Criteria.	17
2.	Overall Test Results	19
3.	PF Test Results	19
B-1.	SARATOGA TM Hammer Suit Average Cumulative HD Permeation	25
B-2.	SARATOGA TM Hammer Suit Average Cumulative GB Permeation	26
D-1.	Individual Negative Control Measurements for HD	31
D-2.	Individual M _f Negative Control Values at Sampling Times for HD	31
D-3.	Individual Negative Control Measurements for GB	32
D-4.	Individual M _f Negative Control Values at Sampling Times for GB	32
D-5.	Individual Positive Control Measurements for HD	33
D-6.	Individual M _f Positive Control Values at Sampling Times for HD	34
D-7	Individual Positive Control Measurements for GB	35

D-8.	Individual M _f Positive Control Values at Sampling Times for GB	36
D-9.	Individual Swatch Measurements for HD, Test 1	37
D-10.	Individual M _f Swatch Values at Sampling Times for HD, Test 1	38
D-11.	Individual Swatch Measurements for HD, Test 2	39
D-12.	Individual M _f Swatch Values at Sampling Times for HD, Test 2	40
D-13.	Individual Swatch Measurements for GB, Test 1	41
D-14.	Individual M _f Swatch Values at Sampling Times for GB, Test 1	42
D-15.	Individual Swatch Measurements for GB, Test 2	43
D-16.	Individual M _f Swatch Values at Sampling Times for GB, Test 2	44
E.	Aerosol Protection Factor Test Data	46

TEST RESULTS OF AIR-PERMEABLE SARATOGA™ HAMMER SUIT TO CHALLENGE BY CHEMICAL WARFARE AGENTS

1. INTRODUCTION

In 1996, Congress passed Public Law 104-201 (Defense Against Weapons of Mass Destruction Act of 1996), directing the Department of Defense (DoD) to assist other federal, state, and local agencies in enhancing preparedness for terrorist attacks using weapons of mass destruction. The DoD responded by forming the Domestic Preparedness Program that same year. One of the objectives of the Domestic Preparedness Program is to enhance emergency and hazardous material (HAZMAT) response to nuclear, biological, and chemical (NBC) terrorism incidents. As part of an effective response, personnel who are responding to an incident will use personal protective equipment (PPE) to protect them from exposure to chemical agents. The specific PPE that will be used by emergency responders depends upon the situation that they encounter and the PPE that the responders currently possess. In some cases, air-permeable charcoal impregnated protective suits may be used to enter a contaminated or potentially contaminated area. Air-permeable charcoal impregnated protective suits are designed to protect the wearer's skin from chemical vapor.

2. OBJECTIVES

This study evaluated the commercially available air-permeable, charcoal impregnated SARATOGATM Hammer Suit to assess how well it could resist vapor permeation from liquid contamination¹ by chemical agents mustard (HD) and sarin (GB). This information is intended for federal, state, and local emergency and HAZMAT personnel as an aid in their evaluation (and possible modification) of current work rules regarding specific air-permeable charcoal impregnated suits currently in inventory and as an aid in future procurement of appropriate air-permeable charcoal impregnated suits. This is especially important if these personnel choose to include military chemical agent protection as a criterion for purchase. This information supplements data and information provided by the suits' manufacturers. The suits were tested as received. The effects of aging, temperature extremes, laundering, and other factors are beyond the intended scope of this test program. These tests are conducted to assess percutaneous (i.e. skin) protection² only.

3. TESTING AND DATA ANALYSIS

3.1 Testing Overview.

The air-permeable, charcoal impregnated SARATOGA[™] Hammer Suit was manufactured by Tex-Shield, Incorporated (Washington, DC). The navy blue suit is a two-piece

¹ Throughout this report the term permeation is used even though for some of the tests the precise mechanism of agent transfer is not determined and penetration is likely to be involved also.

² Inhalation and ocular protection are typically provided by the use of a respirator that covers the eyes, nose, and mouth.

chemical warfare protective overgarment, consisting of a hooded coat and trousers. The SARATOGATM Hammer Suit is similar in design to the Department of Defense SARATOGATM JSLIST overgarment. The outer shell fabric is water repellent finished, 100% Cotton ripstop. The liner is SARATOGATM A1195, a polyester knit coated with activated carbon spherical adsorbers covered with a non-woven laminate.³ The suit (lot# BL100401891) was inspected 1 April 03 and considered acceptable. Figure 1 shows the suit labels for the coat and trousers. Appendix C shows the test suit. Permeation tests of material swatches were conducted to measure the permeation of both GB and HD through the suit material swatches.

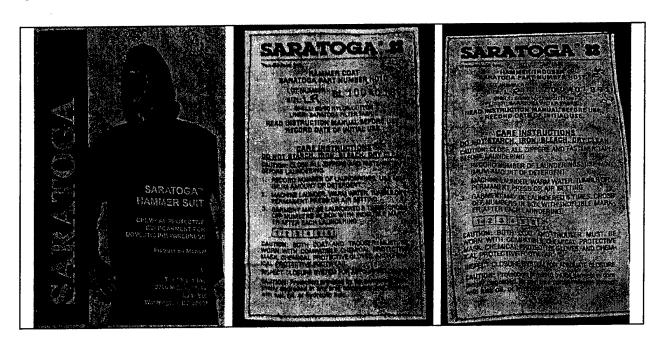


Figure 1. SARATOGA™ Hammer Suit Instruction Manual and Suit Labels

3.2 <u>Liquid Challenge/Vapor Permeation Testing (Agent Swatch Testing).</u>

This testing was conducted to measure the permeation of chemical agents GB and HD through suit swatches over a 24-hr period. The test was intended to assess how well the suit materials and seams resist agent permeation. The amount of agent applied and duration of exposure do not represent any particular threat that responders may encounter, but they do serve as a common point of reference for all test results. The Applied Test Team of the Research and Technology Directorate, Edgewood Chemical Biological Center (ECBC) performed the testing.

The suit coat and trousers were each placed in a sealable plastic bag and kept on a laboratory table for storage during testing. The swatch locations to be sampled were given in the Modified Convective Permeation Test Procedure (Appendix A). Three swatches each were taken from the chest area, thigh area, crotch area, upper arm seam, lower leg seam, and hood seam. At least one of the swatches from the crotch area included a seam. The swatches had a

³ Information taken from the SaratogaTM Hammer Suit Chemical Protective Overgarment for Domestic Preparedness Instruction Manual (Tex-Shield, Inc., 2300 M Street N.W., Suite 800, Washington, DC 20037)

diameter of 1-15/16-in. and were cut on a sample press, normally the day before testing. The swatches were mounted in test cells and placed in the test cabinet for at least an hour conditioning at 90 °F and 35% RH prior to testing; one swatch per test cell.

3.2.1 <u>Liquid Challenge/Vapor Permeation Testing Procedures.</u>

The modified convective permeation test procedure was adapted from TOP 8-2-501⁴ and is described in Appendix A. Air permeability was determined using a Frazier Precision Instrument (#961) low-pressure air permeability machine. The minimum air permeability for use of this test procedure is 20 cm³/min/cm² at 0.1 in. WC (inch of water column). A total of 36 swatches were taken from each of the six different areas described above (18 each for GB and HD). Also, 12 swatches were cut from the suit pants for a positive control test. Two tests were run for each agent. One test covered four areas of the suit (12 swatches), and the second test covered two areas of the suit (6 swatches). Figure 2 shows the test cell that was used.

For each test, laboratory personnel applied a predetermined liquid agent challenge (10g/m²) to the top surface of each swatch. Agent droplets were applied to the surface of the first swatch at time zero. Agent was then applied to the surface of each succeeding swatch at roughly 3-min intervals. The convection tower is connected to the upper chamber of each test cell and a flow of air, from the clean air manifold, sufficient to maintain a differential pressure of 0.1 in. WC, is drawn through the swatch into the lower test cell chamber. The air then passes through the lower test cell chamber outlet and through Teflon tubing to the sampling tee located prior to the linear mass flow controller and vacuum manifold. The test cell was placed into a TOP permeation test apparatus with system control and data acquisition system, fabricated by Battelle Memorial Institute (Columbus, Ohio). Figure 2 shows the permeation apparatus. The test cell inlet was connected to the manifold, which draws conditioned clean air. The test cell outlet was connected to a vacuum source whose flow is maintained by a mass flow controller. A flow of 1.0 L/min was maintained in the lower test cell chamber beneath each swatch.

During the 24-hr test period, gas samples were taken on a sequential basis by a laboratory MINICAMSTM (OI Analytical, CMS Field Products Group, Birmingham, AL) with stream selection system (a miniaturized gas chromatograph (GC) with flame photometric detector and sampling system) from the airstream beneath each swatch, at each sampling tee. See Figure 3. Gas sampling began for the first swatch approximately 3 min following agent application. For HD, subsequent 3-min cycles of the MINICAMSTM were composed of 2.5 min of desorption of collected agent vapor from the pre-concentrator tube (PCT) onto the GC column followed by 0.5 min of gas sampling (collection of agent vapor in the PCT). Sampling is done sequentially through the swatches. The twelve swatches for the first test were sampled

⁴Test Operations Procedure (TOP) 8-2-501, Permeation and Penetration of Air-Permeable, Semipermeable and Impermeable Materials with Chemical Agents or Simulants (Swatch Testing). U.S. Army Dugway Proving Ground, UT, 3 March 1997, UNCLASSIFIED Report (AD A322329).

approximately every 36 min. The 6 swatches for the second test were sampled approximately every 18 min. For GB, the MINICAMSTM cycle was 2.5 min, consisting of 2 min of desorption and 0.5 min of gas sampling. The 12 swatches for the first test were sampled approximately every 30 min. The 6 swatches for the second test were sampled approximately every 15 min.

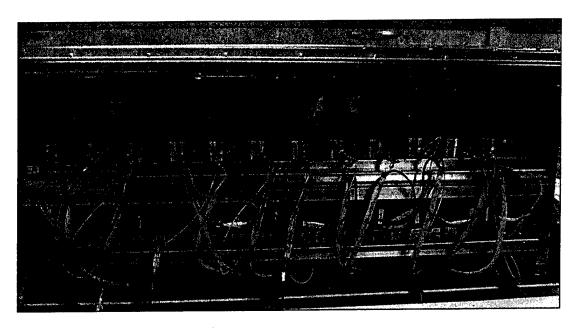


Figure 2. Permeation Apparatus and Test Cells

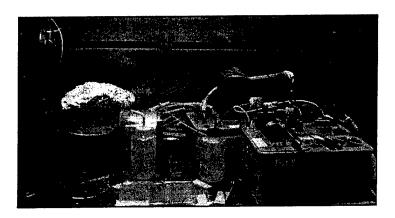


Figure 3. MINICAMSTM and Stream Selection System (SSS)

The MINICAMSTM first determines the amount of agent vapor in each gas sample. Using this result, the amount (ng) of agent vapor present in the airstream that passes through the swatch over the time from the previous gas sample to the current gas sample is determined by the MINICAMSTM permeation software. The calculations assume that the permeation change with time is a straight line over the sampling time interval. The permeation

for each time interval is the average of the permeation rates (flux, $ng/cm^2/min$) for the current and previous gas samples multiplied by the sampling time (36 or 18 min). This amount of agent vapor is presumed to be the amount that has permeated the swatch over that time interval. The cumulative mass of agent permeating the swatch per unit area at any elapsed time during the 24-hr test is defined as M_f (mass/area). It is based on the mass permeated in the time interval over the effective swatch area, which is the opening in the permeation cell (10 cm²), and is determined by the MINICAMSTM permeation software. Over the 24-hr test period, a series of M_f values were calculated for each swatch.

3.2.2 Liquid Challenge/Vapor Permeation Testing Analysis.

The tests yielded M_f data for 18 swatches for each of the two agents over the 24-hr test period. The M_f data were taken for each of the three swatches from one of the six sampling areas (see Equation 1). The average cumulative permeation (M_f) for the three, replicate swatches for each suit area (i.e., chest area) was calculated. This average was then presented, at each of the reported elapsed times, and was assumed to be representative of the suit's permeation resistance at that sampling area. The reported elapsed time for each sampling area was the sum of the elapsed times for the three swatches divided by three.

To estimate the overall suit M_f at each elapsed time, the simplifying assumption was that exposure is uniform over the entire suit. This permitted the use of the weighting factor scheme developed by Belmonte⁵ to determine the weighted average M_f over the entire suit at each average elapsed time. The average elapsed time was the sum of the reported elapsed times for all the sampling areas divided by the number of sampling areas. The weighting factors were assigned roughly on the basis of surface area, assigning a minimum value of 5%. The weighted average M_f at any average elapsed time was calculated using the following equation:

Weighted average M_f = 0.4(Chest area M_f) + 0.35(Thigh area M_f) + 0.05 (Upper arm seam M_f) + 0.05(Lower Leg seam M_f) + 0.05(Crotch area M_f) + 0.05(Hood seam M_f)

3.2.3 <u>Relationship of Liquid Challenge/Vapor Permeation Test Results to Skin</u> Exposure.

The permeation test was designed to distinguish among these material swatches according to their permeation resistance to chemical agents. It was not intended to specifically replicate threat scenarios that may be encountered in actual use or to determine safe wear times. As previously reported by Belmonte,⁵ it was instructive to estimate the agent dosage (C_it_{skin}) that would result from such a standard agent challenge as a relative indication of possible physiological effects. This was done by converting the weighted average M_f values to equivalent agent dosages. This relationship was developed by Fedele (written communication, Dr. P. Fedele, Research and Technology Directorate, ERDEC, July 1997) and was reported by Belmonte.⁵ For suit materials permeable to airflow, the equation is:

⁵ Belmonte, R.B. Test Results of Level A Suits to Challenge by Chemical and Biological Warfare Agents and Simulants: Summary Report, ERDEC-TR-513, U.S. Army Edgewood Research, Development and Engineering Center: Aberdeen Proving Ground, MD, 1998; UNCLASSIFIED Report (AD A353013).

$$C_{t}T_{skin} = \{M_{f}(P_{f} + q/A)\}/\{(q/A + q*/A)(P_{f} + P_{s} + q/A)\}$$
(2)

where

 P_f = fabric permeability to agent

q = air flow through the fabric

 $q^* = air$ flow added beneath the fabric (for the convective permeation test, $q^* = 0$)

A = area of fabric exposed to agent

 $P_s = skin permeability to agent.$

The air flow through the fabric was controlled to maintain a pressure drop of 0.1 in. WC, so q/A is the fabric air permeability (P_a). The equation becomes:

$$C_1 T_{skin} = M_f (P_f + P_a) / P_a (P_f + P_s + P_a)$$
(3)

The P_a must be equal to or greater than 20 cm/min for the convective permeation test to be used. If a fabric provides good protection, P_f is small. The P_s is 2.0 cm/min for HD and 0.1 cm/min for GB; small relative to P_a . The equation becomes:

$$C_1 T_{\text{skin}} = M_f / P_a \tag{4}$$

This approach was reviewed by Fedele and found to be a good approximation (written communication, Dr. P. Fedele, Engineering Directorate, ECBC, 29 Mar 00). The agent dosage can then be compared to doses that are known to cause certain levels of toxicity with the assumption that skin permeability is constant for a given agent over all regions of the body.

3.2.4 <u>Evaluation Criteria for Liquid Challenge/Vapor Permeation Test Results.</u>

When analyzing the test results, it is useful to determine whether the data indicate that the air-permeable suit provides percutaneous (i.e., skin) protection over some period of time. Mustard vapor can produce erythema⁶ (reddening of the skin, certain body regions) at dosages of approximately 100 mg-min/m³ and can produce vesication (skin burns and blisters, certain body regions) at 200 mg-min/m³. Sarin vapor can produce incapacitation⁶ (twitching, convulsions, or loss of consciousness) at unprotected, percutaneous dosages of approximately 8000 mg-min/m³ and can be lethal at unprotected, percutaneous dosages of 15000 mg-min/m³ where exposed persons are healthy, young, fit, and well-nourished males of approximately 70-kg mass. People, who are smaller, less fit, etc., may exhibit adverse effects at lower doses (C_it_{skin}).

The simplifying assumption was that the suit was exposed to a uniform liquid GB challenge over its entire surface, resulting in a uniform exposure of all body regions to GB vapor. This is conservative because the areas likely to receive more exposure (hands, arms, chest, and back) would also be those less sensitive. Therefore, the amount of agent per unit area (weighted average M_f) necessary to permeate the suit to produce a predetermined physiological effect was estimated by using each of the above dosages and that suit's fabric air permeability (P_a) . These values were used to determine the physiologically derived breakthrough times in the graphs of

⁶Belmonte, R.B. Test Results of Level A Suits to Challenge by Chemical and Biological Warfare Agents and Simulants: Summary Report, ERDEC-TR-513, U.S. Army Edgewood Research, Development and Engineering Center: Aberdeen Proving Ground, MD, 1998; UNCLASSIFIED Report (AD A353013).

weighted average M_f versus time given in Appendix B and summarized in Table 1. The critical breakthrough dosages, used to calculate threshold M_f values, are considered to be 100 mg-min/m^3 for HD (reddening of skin) and 8000 mg-min/m^3 for GB (incapacitation – twitching, convulsions, or loss of consciousness). A physiologically derived breakthrough time is the time when the weighted average M_f equals the threshold M_f calculated from Equation 4.

Table 1. Agent Breakthrough Criteria

Suit	Agent	Breakthrough Dosage (mg- min/m³)	Physiological Effect	Fabric Air Permeability (P _a) at 0.1 in. WC (cm/min)	Threshold M,
	HD	100	Erythema	56	5,600
SARATOGA™	HD	200	Vesication	56	11,200
Hammer Suit	GB	8,000	Incapacitation	56	448,000
	GB	15,000	Lethality	56	840,000

Breakthrough time should not be interpreted as the time that a suit can be safely worn, either for HD or GB. Breakthrough times should only be used to compare suit materials.

3.3 <u>Protection Factor (Aerosol) Testing.</u>

A second test was performed to determine the suit's ability to protect the wearer from an aerosol threat. This test involved human test subjects donning the suit and entering a chamber filled with a challenge concentration of corn oil aerosol. This aerosol is kept between 20 and 40 mg/m³, and the particle size is between 0.4 and 0.6 μ Mass Median Aerodynamic Diameter (MMAD). That concentration and size ranges are what best simulate chemical and biological agent aerosols. While in the chamber, the subjects perform exercises designed to stress the seals of the equipment. If the suit were to leak, the corn oil aerosol would enter the suit and be sampled by the laser photometers. The measure of the suit's performance for this test is the protection factor (PF).

3.3.1 Protection Factor Testing Procedures.

Prior to test day, the PF Test Facility received eight complete suit ensembles (jackets and trousers), all of which were of the large/regular size. Two sampling probes were installed into each jacket. One was located in the upper arm region, and the second was placed in the neck region. These areas were selected as the most likely place for aerosol leakage to occur during a worst-case scenario. These two probes were then connected to a single sampling tube using a 'Y' connector. Each jacket and trouser were paired and individually numbered for uniqueness throughout testing.

On test day, 30 military volunteers arrived at the PF Test Facility to participate in the test. Anthropometric measurements were taken from the volunteers including chest, waist, and height. From these measurements, 16 subjects were chosen to best fit the suits that were provided to the facility. The subjects then completed volunteer agreements, while the PF Test Facility personnel explained the test procedure. The first eight subjects then readied themselves to begin the test. They donned the suit with the help of the PF Test Facility personnel.

A correctly sized M40 mask was also expertly donned by the facility personnel onto the subjects. The subjects also wore inner cloth gloves and butyl rubber outer gloves. Sampling lines were then attached to the probes in the suits. Once ready, the subjects were led into the chamber where they were attached to sampling tubes connected to laser photometers located outside of the chamber. The test was then started. The subjects performed the following eight 1-min exercises:

- 1. Normal breathing
- 2. Bend forward, touch toes
- 3. Jog in place
- 4. Raise arms above head and look up
- 5. Bend knees and squat
- 6. Crawl on hands and knees
- 7. Twist torso with hands folded in front of chest
- 8. Normal breathing

The test facility personnel communicated each exercise to the subjects from outside the chamber. When the test was complete, the subjects disconnected their sampling tubes and exited the chamber. All 16 subjects performed a trial twice for a total of 32 data points.

3.3.2 Protection Factor Data Analysis Method.

Suit performance was quantified in terms of a PF. Just before the test was started, the photometer takes a challenge aerosol concentration reading. Throughout the test, a sample was pulled continuously from within the suit. The PF was calculated by determining the ratio of the challenge aerosol concentration to the in-suit aerosol concentration as quantified by integrating the curve of the voltage output from the photometer over a time interval (1 min per exercise). A PF was calculated for each individual exercise (PF_i):

$$PF_{i} = \frac{Challenge\ Concentration}{In-suit\ Concentration} \tag{5}$$

Each PF_i for that trial was then used to calculate an overall PF for a subject (PF_o) using the harmonic average as follows:

$$PF_o = n \left(\sum_{i=1}^n \frac{1}{PF_i} \right)^{-1} \tag{6}$$

where n is the number of exercises. The PF_o is affected most by the smallest PF_i. Under the conditions of this test and the sensitivity of the photometer, the maximum PF that can be reported is 100,000. The data acquisition computer performed all calculations at the time of the test. Appendix E shows the PF_i and PF_o for each subject on each trial.

4. RESULTS AND DISCUSSION

4.1 Swatch Test Results.

Five thickness measurements for each swatch were taken prior to testing using an Ames dial comparator (B. C. Ames Company, Waltham, MA). The average thicknesses are given in Appendixes D and E. The MINICAMSTM minimum detection limit for HD and GB was set at 0.57 ng for all tests. No visible damage was observed on any of the swatches from either HD or GB exposure. The HD weighted average M_f data are presented in Table B-1 and the GB weighted average M_f data are presented in Table B-2. The HD and GB individual swatch data are given in Appendix D. The plot of the weighted average HD permeation is shown in Figure B-1, and the plot of weighted average GB permeation is shown in Figure B-2. The plot of HD permeation by sampling area is shown in Figure B-3, and the plot of GB permeation by sampling area is shown in Figure B-4. The results are summarized in Table 2.

Table 2. Overall Test Results

Breakthrough	Time (minutes)
Incapacitation	Erythema
GB	HD
>396	253

These breakthrough criteria are not to be construed as safe threshold values; they are being used only to rank suits.

4.2 Aerosol Test Results.

The overall PF values for all of the trials were between 1.9 and 3.4. Due to the low values in PF, the operational exercises were not tested with this suit. The subjects only performed the eight exercises listed in Section 3.3.1. Table 3 lists the passing percentage for this suit at point estimates derived from Army requirements. The passing percentage represents the percentage of trials that achieved an overall PF greater than the PF listed in the left column.

Table 3. PF Test Results

10010011	T 000 T C00 00110
PF	PASS %
0	100.00
2	93.75
5	0.00

4.3 Discussion of Results.

The test data reveals that the SARATOGA™ Hammer Suit tested can protect the wearers from liquid CW agents but that the suit provides minimal protection from a vapor threat. Breakthrough times should not be interpreted as the time that a suit can be safely worn, either for HD or GB. Breakthrough times should only be used to compare suit materials. In other words, the suit material does provide limited skin protection, but the suit itself provides little or no skin protection.

ACRONYMS AND ABBREVIATIONS

A Surface area of fabric exposed to agent

ccm Cubic centimeters per minute CFR Code of Federal Regulations

Ct Cumulative vapor exposure, product of vapor concentration (mg/m³) and time (minutes)

C_It_{skin} Cumulative vapor exposure to skin

cm² Square centimeters CW Chemical Warfare

°F Temperature in degrees Fahrenheit

delta p Differential pressure
DoD Department of Defense

ECBC U.S. Army Edgewood Chemical Biological Center

ERDEC U.S. Army Edgewood Research, Development and Engineering Center

g Gram

GB Sarin, Isopropylmethylphosphonofluoridate

GC Gas chromatograph

HD Sulfur Mustard; 2,2'-Dichlorodiethylsulfide

inch WC Inch of water column (equals 249.0889 pascals (Pa)) kPa Kilopascals (one kilopascal equals 1000 pascals (Pa))

L Liter

M_f Cumulative mass permeation through the fabric

MMAD Mass Median Aerodynamic Diameter

 m^2 Square meters m^3 Cubic meters mg Milligram μL Microliter mg Nanogram

NBC Nuclear, Biological and Chemical

OSHA Occupational Safety and Health Administration

PCT Pre-concentrator tube
PF Protection Factor

PPE Personal Protective Equipment

P_a Fabric air permeability
P_f Fabric agent permeability

Ps Skin permeability
PF Protection Factor

q Airflow through fabric, cubic centimeters/min

q* Air flow added beneath fabric, cubic centimeters/min

RH Relative Humidity

SCBA Self-Contained Breathing Apparatus

TOP Test Operations Procedure

APPENDIX A MODIFIED CONVECTIVE PERMEATION TEST PROCEDURE

This test procedure was adapted from Test Operations Procedure (TOP) 8-2-501, Permeation and Penetration of Air-Permeable, Semipermeable and Impermeable Materials with Chemical Agents or Simulants (Swatch Testing). U.S. Army Dugway Proving Ground, UT. 3 March 1997, UNCLASSIFIED Report (AD A322329).

- 1. Upon receipt of an item, all available information will be recorded; date of manufacture, lot number, serial number, materials of construction, etc. Digital pictures will be taken of the label(s) and packaging (if any).
- 2. From each overgarment, two 6-in. diameter material swatches shall be cut; one from the front chest/abdominal area and one from the front thigh area. These swatches will be tested for air permeability IAW paragraph 3.2 of TOP 8-2-501 and the results averaged. For undergarments, an equal number of like-sized swatches will be cut from the undergarment (same locations as above) and from the clothing (e.g. police uniform, firefighter's bunker gear) worn over the undergarment. Air permeability will then be determined on the outer clothing/undergarment swatch ensemble, layered as worn. The average air permeability must be greater than 20 cm³/min/cm² at 0.1 in. of water (inch WC) for the convective permeation procedure to be used.
- 3. From each overgarment, three 1-15/16-in. diameter material swatches will be taken from the chest area and 3 like diameter material swatches will be taken from the thigh area, adjacent to the air permeability swatch locations, for HD. The same number of material swatches from the same locations will be taken for GB. Depending upon the overgarment configuration, three seam swatches (same diameter) will be taken from the upper arm, three seam swatches will be taken from the lower leg, and three swatches, including at least one seam, will be taken from the crotch area for HD and an equal number for GB. If a hood, socks, or gloves are present; three seam swatches will be taken from each item for HD and three for GB. Each swatch will be placed in an airtight bag and given a unique serial number, which will be placed on the bag. A list of serial numbers will be kept with the swatches. For undergarments, an equal number of like-sized swatches will be cut from the undergarment (same locations as above) and from the clothing worn over the undergarment. The outer clothing/undergarment swatch ensemble will be layered as worn and stored as above.
- 4. The environmental chamber will be controlled at a temperature of 90 °F \pm 2°. The temperature will be checked weekly with a calibrated meter. The test cell air will be drawn from a manifold supplied with clean air (flow set at 20-30 L/min, excess vented into the test cabinet) from the Miller-Nelson unit set at 90 °F and 80 % RH. There will be no system control and data acquisition system due to budget constraints. The cabinet temperature will be recorded in a computer file. The temperature and RH of the test cell air will be manually recorded.
- 5. The TOP test cell with convective permeation tower will be used. When assembling, the cell lugs will be tightened by hand to finger tight. The conditioned air will flow

from the manifold into the top of the tower, through each swatch and will exit the bottom of the cell. For each cell, the port on the side of the tower and the tee at the cell exit will be connected to a differential pressure gage. The flow rate from each cell will be controlled with a linear mass flow controller connected to the vacuum manifold. Each flow rate will be set to a value that yields a reading of 0.1 in. of water on the differential pressure gage. The gage readings will be checked with a calibrated differential pressure meter weekly. Flow rates will be manually recorded.

- 6. Each test cell will be checked for leaks after assembly by connecting it to the vacuum source and checking that the inlet flow is the same as the outlet flow on the mass flow controller (cell lugs will be retightened if flows don't match).
- 7. The sample swatches will serve as their own negative controls while being preconditioned for 2 hr prior to agent contamination by being MINICAMSTM monitored. A SARATOGATM material swatch will be used as a positive control for each test (six test swatches and one SARATOGATM swatch). To establish a baseline, at least two tests using SARATOGATM control material only (14 swatches) will be conducted with HD and two tests will be conducted with GB prior to commencement of testing.
- 8. Agents GB and HD will be used. The contamination density will be $10~\rm g/m^2$ (eight $1~\mu L$ HD droplets or ten $1~\mu L$ GB droplets). A robotic agent application system is not available due to budget constraints. The agent will be applied using the click/touch method with a Hamilton repeating dispenser. The contamination density will be checked each test day by placing 10 droplets into a pre-weighed flask or vial containing appropriate solvent, weighing the vial or flask on a calibrated balance and calculating the average droplet weight. Alternatively, one droplet may be placed into a vial containing appropriate solvent and the amount of agent in the droplet determined by an appropriate analytical procedure such as gas chromatography.
- 9. Seven swatches will be tested at once. MINICAMSTM with stream selection system will monitor vapor permeation with a 3-min cycle. There will be three blank sampling intervals following the positive control swatch. Each swatch will be sampled once every 30 min. The MINICAMSTM will be standardized weekly.
- 10. The test length will be 10 hr; 2 hr for conditioning and 8 hr after agent contamination. Each swatch shall complete four MINICAMS™ sampling cycles prior to contamination.
- 11. The test cells and o-rings will be aerated for at least 24 hr between uses. No other cleaning method will be used. O-rings will be completely replaced on a weekly basis.
- 12. The data to be reported are cumulative permeation (ng/cm²) versus elapsed time (minutes) and Ct (cumulative mass/flow rate, ng-min/cm³) versus elapsed time for each swatch. All recorded data will be placed in laboratory notebooks and a technical report will be drafted at the conclusion of this effort.

APPENDIX B **TEST RESULTS**

Table R-1. SARATOGATM Hammer Suit Average Cumulative HD Permeation

A S	1 abic	יז-ע.	BAIKA	100	Crotch	Initio	BullA	y Cr a,	Upper		Lower		Weighted	
	Thigh	11.4	Chest		Seam and		Hood		Arm		Leg	Average	Average	
Time				Seam Time Seam Ti			Seam	Time	Seam	Time	Mi			
(min)	(ng/cm²)	(min)	(ng/cm ²)	(min)	(ng/cm ²)	(min)		(min)	(ng/cm²)	(min)	(ng/cm²)	(min)	(ng/cm²)	
4	12	13	18	22	255	31	547	6	6	15	174	15	60	
40	857	49	324	58	1382	68	1878	24	147	33	753	46	638	
77	2442	86	893	95	2746	104	3039	42	461	51	1585	76	1603	
113	3956	122	1482	131	3875	140	3797	60	8 56	69	2412	106	2525	
149	5263	158	2014	167	4812	176	4364	78	1254	87	3119	136	3325	
185	6517	194	2509	203	5649	212	4875	97	1615	106	3716	1 6 6	4077	
221	7658	230	2976	239	6304	249	5320	115	1931	124	4237	196	4760	
258	8476	267	3375	276	6740	285	5632	133	2203	142	4702	227	5281	
294	9015	303	3685	312	7048	321	5831	151	2433	160	5112	257	5650	
330	9395	339	3933	348	7282	357	5994	169	2628	178	5472	287	5930	
366	9657	375	4163	384	7452	393	6149	187	2800	196	5797	317	6155	
402	9863	411	4343	420	7571	430	6295	205	2955	214	6098	347	6335	
439	10038	448	4458	457	7661	466	6403	223	3099	232	6381	377	6473	
475	10183			W.				241	3235	250	6649			
W 11 8 12 12		gi ku di						259	3365	268	6906	SALE.		
				#4				278	3489	287	7154			
				4857				296	3607	305	7389			
			eria e			2 (3.3 2 (3.3 2 (3.3)		314	3720	323	7599			
			ing in mil			iliy		332	3825	341	7782			
			The second				i de de de de	350	3922	359	7942			
								368	4008	377	8081			
X	. 1 . 1 vg.	15,717	Jirya (14	14.7		146		386	4085	395	8200			
901		121 1						404	4152	413	8296			
		121 1						422	4207	431	8371			
	40.0	4, 1, 4					T All Se	440	4254	449	8431			
		, 1 - OH						459	4292	468	8480			
	i ja Yilaya i							477	4323					

Note 1:

Note 2:

The time given for each sampling area is the average of the elapsed times for the three swatches tested per sampling area.

The average time is the sum of the times given for each sampling area divided by the number of sampling areas.

Weighted average M_i = 0.4(chest area M_i)+0.35(thigh area M_i)+0.05(upper arm seam M_i)+0.05(lower leg seam M_i)+0.05(crotch area M_i)+0.05(hood seam M_i). Note 3:

Table B-2. SARATOGA™ Hammer Suit Average Cumulative GB Permeation

Time (min)	Thigh Material (ng/cm²)	Time (min)	Chest Material (ng/cm²)	Time (min)	Crotch Seam and No Seam Time (ng/cm²) (min)		Hood Seam (ng/cm²)	Time (min)	Upper Arm Seam (ng/cm²)	Time (min)	Lower Leg Seam (ng/cm²)	Average Time (min)	Weighted Average Mr (ng/cm²)	
3	1020	11	713	24	4794	19	5475	5	806	12	2554	12	1324	
33	12308	41	4209	51	12114	46	17059	25	7215	33	8838	38	8253	
63	18208	71	6381	77	14578	72	22421	45	12128	53	12210	64	11992	
93	20830	101	7623	104	15815	99	25065	65	15212	73	13776	89	13833	
123	22833	131	8583	131	16719	126	26732	85	17201	93	14722	115	15194	
154	24548	161	9405	157	17450	152	27934	105	18511	113	15392	140	16318	
184	26084	191	10154	184	18072	179	28917	125	19523	133	15923	166	17313	
214	27478	221	10828	211	18627	206	29753	145	20314	153	16370	191	18202	
244	28733	251	11447	237	19145	232	30492	165	20964	173	16760	217	19004	
274	29909	281	12037	264	19629	259	31163	185	21541	193	17116	243	19755	
304	31045	311	12596	291	20080	286	31771	205	22055	213	17439	268	20471	
334	32119	341	13127	317	20504	312	32330	225	22515	233	17732	294	21146	
364	33156	371	13635	344	20918	339	32855	245	22924	253	18006	319	21794	
394	34163	401	14120	371	21320	366	33352	265	23299	273	18266	345	22417	
424	35129	431	14589	398	21695	393	33826	285	23648	293	18508	370	23015	
454	36053	461	15041	424	22053	419	34275	305	23974	313	18734	396	23587	
Section 12	1500 154	100 m					at Cajdy P	325	24276	333	18954			
71,17- ·		å						345	24559	353	19167			
		4 22 3						365	24835	373	19368		W. Agreement	
8	YMARK I					L _a		385	25099	393	19560			
	14 4 ₈₀							405	25347	413	19748	(1.848)		
			n, web			7	4.	425	25589	433	19931			
			i dia k					445	25829	453	20109			
			.					465	26056	473	20284			

Note 1:

Note 2:

The time given for each sampling area is the average of the elapsed times for the three swatches tested per sampling area.

The average time is the sum of the times given for each sampling area divided by the number of sampling areas.

Weighted average M_i = 0.4(chest area M_i)+0.35(thigh area M_i)+0.05(upper arm seam M_i)+0.05(lower leg seam M_i)+0.05(crotch area M_i)+0.05(hood seam M_i). Note 3:

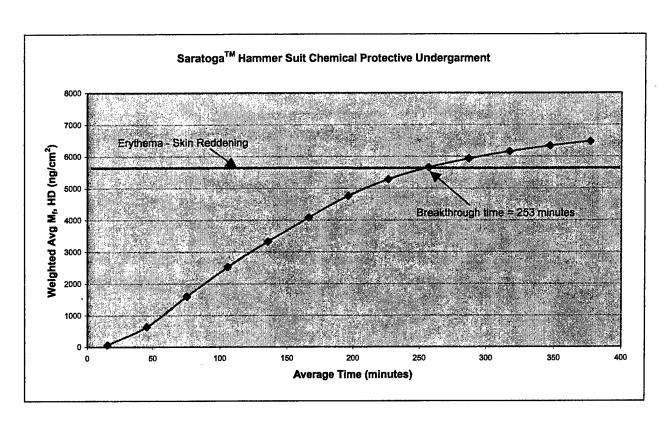


Figure B-1. SARATOGATM Hammer Suit – Weighted Average HD Permeation

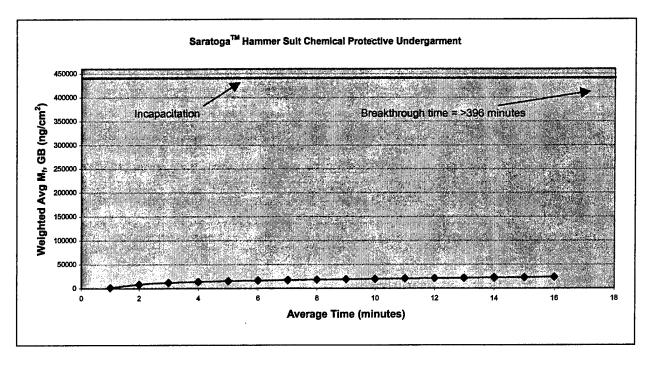


Figure B-2. SARATOGA $^{\text{TM}}$ Hammer Suit – Weighted Average GB Permeation

Saratoga[™] Hammer Suit

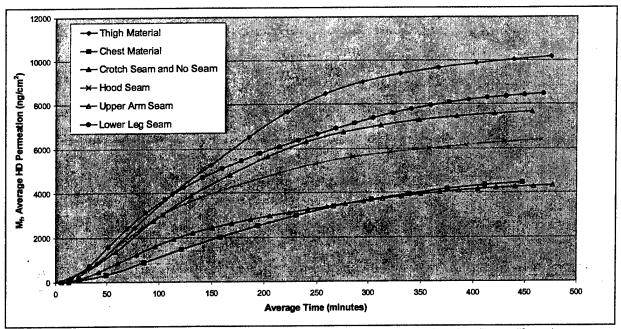


Figure B-3. SARATOGATM Hammer Suit – HD Permeation by Sampling Area

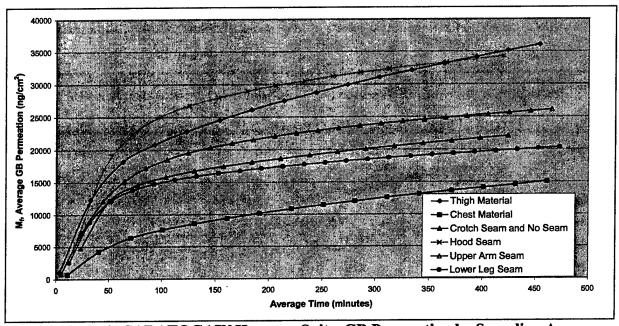


Figure B-4. SARATOGA™ Hammer Suit – GB Permeation by Sampling Area

$\begin{array}{c} \textbf{APPENDIX C} \\ \textbf{SARATOGA}^{\texttt{TM}} \ \textbf{HAMMER SUIT PHOTOS} \end{array}$

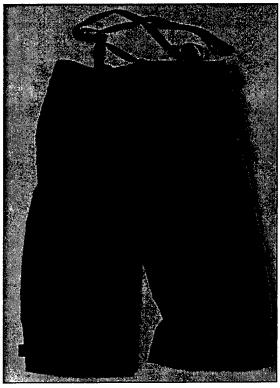


Figure C. SARATOGATM Hammer Suit Coat and Trousers

APPENDIX D NEGATIVE/POSITIVE CONTROL AND INDIVIDUAL TEST DATA

Air-Permeable SARATOGA™ Hammer Suit vs. HD Liquid (10g/m²)
Negative Control Test

Modified Convective Permeation Test at 90 °F and 35% RH, 07/11/03

Table D-1. Individual Negative Control Measurements for HD

1.64	DIC D-1. Individual	Tregutive Control	Mices an officiate 101	
Swatch#	Average Thickness (inches)	Permeation Cell#	Computer Average Flow (ccm)	Pressure Difference, (inch WC)
1	0.045	6	402	0.103
2	0.045	1	430	0.100
3	0.045	. 3	419	0.103
4	0.045	4	394	-0.109
5	0.045	10	431	0.097
6	0.045	12	403	0.098
7	0.045	11	410	0.098
8	0.045	9	489	0.103
9	0.045	7	339	0.103
10	0.045	2	430	0.099
11	0.044	5	421	0.098
12	0.045	8	411	0.100

Notes:

- -Chemical Protective Overgarment for Domestic Preparedness, SARATOGA™ Hammer Suit
- -Made by: Tex-Shield, Inc. 2300 M Street N.W. Suite 800 Washington, DC 20037
- -Suit inspected 1 April 03 and found okay. Size LR, lot# BL100401891
- -Swatches were taken from the front of the left pant leg; they consisted of a single layer of fabric and a layer of carbon material.

1-¹⁵/₁₆-in. swatch
Used MINICAMSTM GC/FPD
Min. Detection Limit = 0.57 ng
Total Test Time = 33:15

Average Chamber Temperature = 32.2°C (90.0 °F)
Average Manifold Temperature = 32.1°C (89.8 °F)
Average Relative Humidity = 36.7 %
Average Computer Flow Rate = 415 ccm
Average Pressure Difference = 0.101 in. WC

Table D-2. Individual Mf Negative Control Values at Sampling Times for HD

Time (min)	4	Time (min)	S #2	Time (min)	S #3	Time (min)	S #4	Time (min)	S #5	Time (min)	S #6	Time (min)	S #7	Time (min)	S #8	Time (min)	S #9	Time (min)	\$ #10	Time (min)	S #11	Time (min)	\$ #12
0	0	3	0	6	0	9	0	12	0	15	0	18	0	21	0	24	0	27	0	30	0	33	0

Note:

-In all M_f tables, zero (0) is equivalent to non-detectable (ND).

Air-Permeable SARATOGA™ Hammer Suit vs. GB Liquid (10g/m²) Negative Control Test

Modified Convective Permeation Test at 90 °F and 35% RH, 07/22/03

Table D-3. Individual Negative Control Measurements for GB

				Pressure Difference, (inch
Swatch #	Average Thickness (inches)	Permeation Cell#	Computer Average Flow (ccm)	WC)
1	0.045	5	371	0.100
2	0.045	3	465	0.099
3	0.045	12	409	0.100
4	0.045	4	364	0.100
5	0.045	8	355	0.100
6	0.045	2	388	0.100
7	0.045	9	370	0.100
8	0.045	7	330	0.100
9	0.045	6	439	0.099
10	0.045	10	365	0.098
11	0.045	1	351	0.099
12	0.045	11	412	0.100

Notes:

-Swatches were taken from the back of the lower left pant leg; they consisted of a single layer of fabric and a layer of carbon material.

$1^{-15}/_{16}$ -in. swatch	Average Chamber Temperature = 32.2 °C (90.0 °F)
Used MINICAMS TM GC/FPD	Average Manifold Temperature = 32.1 °C (89.8 °F)
Min. Detection Limit = 0.57 ng	Average Relative Humidity = 35.4%
Total Test Time = 58:19	Average Computer Flow Rate = 385 ccm

Table D-4. Individual Mc Negative Control Values at Sampling Times for GB

Average Pressure Difference = 0.100 in. WC

	Table D-4. Individual Mil McGative Control values at Samping 2 mass 10 - 0																						
		T			Г	[T	1 1 1			1			20.00		0.00	8.0	31000			13.52	ed to P	100
Time	S	Time.	8	Time	8	Time	S	Time	S	Time		Time	S										
(min)	#1	(min)	#2	(min)	#3	(min)	#4	(min)	#5	(min)	#6	(min)	#7	(min)	#8	(min)	#9	(min)	#10	(min)	#11	(min)	#12
1	0	3	0	6	0	8	0	11	0	13	0	16	0	18	0	21	0	23	0	26	0	28	0
31	0	33	0	36	0	38	0	41	n	43	0	46	0	48	0	51	0	53	0	56	0	58	0

Notes:

-In all M_f tables, zero (0) is equivalent to non-detectable (ND).

Air-Permeable SARATOGATM Hammer Suit vs. HD Liquid (10g/m²) Positive Control Test No. 1:5. 1 Graph of the Proposition Test of 00 %F and 25% PH 07/14/02

Modified Convective Permeation Test at 90 °F and 35% RH, 07/14/03

Table D-5. Individual Positive Control Measurements for HD

			Computer Average	Pressure Difference
Swatch#	Average Thickness (inches)	Permeation Cell#	Flow (ccm)	(in WC)
1	0.045	6	412	0.104
2	0.045	1	440	0.102
3	0.045	3	429	0.107
4	0.045	4	383	0.107
5	0.045	10	451	0.104
6	0.045	12	433	0.105
7	0.045	11	430	0.107
8	0.045	9	499	0.122
9	0.045	7	329	0.101
10	0.045	2	439	0.120
11	0.044	5	431	0.127
12	0.045	8	422	0.101

1-¹⁵/₁₆-in. swatch
Used MINICAMSTM GC/FPD
Min. Detection Limit = 0.57 ng
Total Test Time = 7:59:09

Average Chamber Temperature = 32.2 °C (90.0 °F) Average Manifold Temperature = 32.0 °C (89.6 °F) Average Relative Humidity = 35.2% Average Computer Flow Rate = 425 ccm Average Pressure Difference = 0.109 in. WC

Air-Permeable SARATOGATM Hammer Suit vs. HD Liquid (10g/m²), Positive Control Test Modified Convective Permeation Test at 90 °F and 35% RH, 07/14/03

Table D-6. Individual Mf Positive Control Values at Sampling Times for HD

Time		Time		Time		Time		Time		Time		Time	S	Time	1								
(min)	S #1	(min)	S#2	(min)	S#3	(min)	S #4	(min)	S #5	(min)	S#6	(min)	S #7	(min)	S#8	(min)	S #9	(min)	S #10	(min)	#11	(min)	S #12
3	5	6	18	9	37	12	65	15	132	18	69	21	118	24	265	27	223	30	351	33	378	36	436
39	510	42	589	45	714	48	843	51	1219	54	1096	57	999	60	1530	63	1158	66	1571	69	1485	72	1572
75	1529	78	1624	81	1860	84	2095	87	2833	90	2953	93	2421	96	3320	99	2492	102	3223	105	2908	108	2994
111	2729	114	2800	117	3126	120	3457	123	4560	126	4893	129	3930	132	5184	135	3920	138	4960	141	4423	144	4502
147	3957	150	4020	153	4421	156	4806	159	6319	162	6828	165	5450	168	7010	171	5350	174	6636	177	5947	181	6069
184	5192	187	5286	190	5762	193	6146	196	8068	199	8607	202	6954	205	8769	208	6739	211	8060	214	7166	217	7428
220	6396	223	6580	226	7173	229	7491	232	9603	235	10063	238	8343	241	10258	244	8036	247	9140	250	7952	253	8331
256	7541	259	7863	262	8618	265	8671	268	10711	271	11077	274	9409	277	11243	280	9070	283	9903	286	8478	289	8884
292	8638	295	9197	298	9955	301	9552	304	11463	307	11722	310	10145	313	11873	316	9761	319	10433	322	8864	325	9278
328	9752	331	10413	334	11050	337	10207	340	12032	343	12212	346	10678	349	12327	352	10205	355	10809	358	9153	362	9577
365	10626	368	11199	371	11848	374	10683	377	12446	380	12569	383	11052	386	12655	389	10512	392	11074	395	9367	398	9807
401	11117	404	11655	407	12353	410	10992	413	12728	416	12814	419	11320	422	12903	425	10743	428	11276	431	9537	434	9990
437	11450	440	11979	443	12680	446	11206	449	12943	452	13005	455	11530	458	13101	461	10931	464	11442	467	9677	470	10145
473	11706	476	12234	479	12933	1 3 2	4		No. To the	10						7 14			à)			305	747.4

Notes:

⁻In all M_f tables, zero (0) is equivalent to non-detectable (ND).

Air-Permeable SARATOGA[™] Hammer Suit vs. GB Liquid (10g/m²) Positive Control Test

Modified Convective Permeation Test at 90 °F and 35% RH, 07/22/03

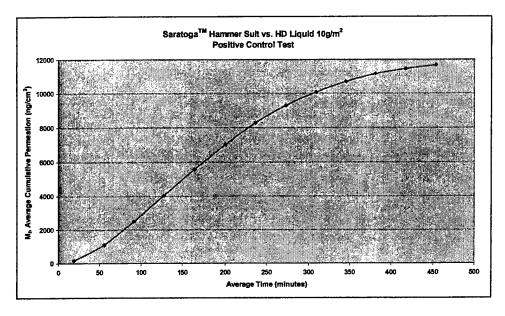


Table D-7. Individual Positive Control Measurements for GB

14	Die D-7. Illuiviuua	I I OSITIVE CONTROL	vicusui chiches ioi	<u> </u>
Swatch#	Average Thickness (inches)	Permeation Cell#	Computer Average Flow (ccm)	Pressure Difference (in WC)
1	0.045	5	372	0.100
2	0.045	3	465	0.102
3	0.045	12	409	0.100
4	0.045	4	364	0.104
5	0.045	8	356	0.099
6	0.045	2	388	0.098
7	0.045	9	370	0.100
8	0.045	7	329	0.103
9	0.045	6	439	0.095
10	0.045	10	365	0.102
11	0.045	1	351	0.099
12	0.045	11	412	0.105

Notes:

1-¹⁵/₁₆-in. swatch Used MINICAMS™ GC/FPD Min. Detection Limit = 0.57 ng Total Test Time = 7:59:24

Average Chamber Temperature = 32.2 °C (90.0 °F) Average Manifold Temperature = 32.1 °C (89.8 °F)

Average Relative Humidity = 35.9%

Average Computer Flow Rate = 385 ccm

Average Pressure Difference = 0.101 in. WC

⁻Swatches were taken from the back of the lower left pant leg; they consisted of a single layer of fabric and a layer of carbon material.

⁻Agent beaded up on the surface of the swatch.

Modified Convective Permeation Test at 90 °F and 35% RH, 07/22/03 Air-Permeable SARATOGATM Hammer Suit vs. GB Liquid (10g/m²) Positive Control Test

	distant.	S #12	6866	23828	29617	33255	35980	38319	40330	42040	43590	44978	46257	47460	48567	49637	50687	51730
	Time	(mim)	62	29	68	139	149	179	209	T-	7	T	1	$\overline{}$	Т	T	\top	T
		S#11	5034	12540	15542	17497	19046	20383	21577	22668	23624	24475	25294	26066	26807	27514	28187	28852
	Time	(mim)	27	57	82	117	147	1771	207	237	267		327	357	387	417	447	1
		S #10	7771	19522	23166	25652	27555	29200	30683	32041	33280	34381	35411	36399	37342	38241	39126	40017
or GB	Time	(min)	24	54	æ	114	144	174	204	234	264		324	354	384	414	444	
mes f		S 表	8035	22191	27317	30815	33553	35879	37924	39704	41316	42773	44122	45401	46639	47858	49028	50146
ng Ti	Time	(min)	22	52	88	112	142	172	202	232	262	292	322	352	382	412	442	472
lividual Mr Positive Control Values at Sampling Times for GB		S#8	5230	16140	20839	24104	26566	28623	30493	32137	33599	34966	36205	37323	38388	39398	40398	41387
at Sa	Time	(mim)	19	49	62	1 09	139	169	199	229	259	583	319	349	379	409	439	469
alues		S#7	4584	15732	20561	23798	26329	28394	30190	31791	33257	34575	35754	36866	37936	38978	40000	40974
trol V	Time	(mim)	17	47	11	102	137	167	197	227	257	287	317	347	377	407	437	467
Con		S B	4987	18583	23836	27323	29928	32101	34045	35771	37305	38735	40058	41270	42431	43556	44634	45680
sitive	Time	(min)	14	44	74	104	134	164	194	224	254	784	314	344	374	404	434	464
Mr Po		S裁	2935	13135	17606	20517	22776	24639	26298	27752	29042	30248	31357	32397	33384	34334	35255	36149
idual	Time	(min)	12	42	72	102	132	162	192	222	252	282	312	345	372	402	432	462
		S #4	2874	14942	19499	22192	24121	25785	27243	28523	29688	30777	31772	32718	33636	34504	35358	36180
D-8.	Time	(min)	6	ස	69		129	159	189	219	249	279	66 66	339	369	333	429	459
Table D-8. Ind		S#3	2182	16169	22892	26771	29644	31954	33975	35682	37218	38613	39918	41150	42316	43410	44441	45455
L	Time	(min)	7	37	29	97	127	157	187	217	247	277	307	337	367	397	427	457
		S#1 (min) S#2	1544	17585	25566	29805	32959	35487	37757	39781	41566	43207	304 44712	46078	47368	48611	49806	50959
	Time	Ē	4	ষ্ণ	8	- 1		154	184	214	42122 244	274		334	364	394	424	454
			493	15705	25847	30375		36173	38344			43776	45282	46687	47990	49211	50388	51519
	E E	E E	7	ಜ္က	8	8	123	152	182 28	212	242	272	302	32	362	392	422	452

Notes:
-In all M_f tables, zero (0) is equivalent to non-detectable (ND)

Air-Permeable SARATOGA[™] Hammer Suit vs. HD Liquid (10g/m²) Test 1 Modified Convective Permeation Test at 90 °F and 35% RH, 07/17/03

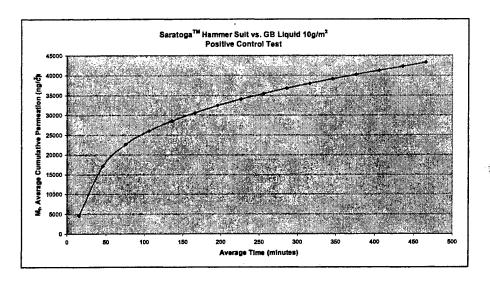


Table D-9. Individual Swatch Measurements for HD, Test 1

Swatch #	Description	Average Thickness (Inches)	Permeation Cell#	Computer Average Flow (ccm)	Pressure Difference (in WC)
1	Thigh	0.044	6	412	0.104
2	Thigh	0.044	4	440	0.100
3	Thigh	0.045	8	429	0.096
4	Chest	0.044	2	243	0.110
5	Chest	0.044	1	243	0.107
6	Chest	0.044	12	272	0.105
7	Crotch - no seam	0.044	5	430	0.101
8	Crotch - seam	0.108	9	279	0.113
9	Crotch - seam	0.089	10	399	0.092
10	Hood - seam	0.081	3	249	0.111
11	Hood - seam	0.066	11	242	0.115
12	Hood - seam	0.073	7	261	0.110

Notes:

- -Swatches consisted of a single layer of fabric and a layer of carbon material.
- -Agent beaded up on the surface of the swatch.

1-¹⁵/₁₆-in. swatch Used MINICAMSTM GC/FPD Min. Detection Limit = 0.57 ng Total Test Time = 7:57:47

Average Chamber Temperature = 32.2 °C (90.0 °F) Average Manifold Temperature = 32.1 °C (89.8 °F)

Average Relative Humidity = 34.1% Average Computer Flow Rate = 325 ccm Average Pressure Difference = 0.105 in. WC

Air-Permeable SARATOGATM Hammer Suit vs. HD Liquid (10g/m²) Test 1

Modified Convective Permeation Test at 90 °F and 35% RH, 07/17/03

		<u>~</u>	Γ_	N	က	စ	IQ.	ဖြ	ဖြ	ις.	<u></u>	0	ဖြ	0	N		7
	S	#	741	2232	3513	4269	4845	5386	2886	6235	6437	629	6726	6849	6942		
	Time	(mim)	쫎	1	101	143	179	215	252	288	324	360	396	433	469	1 3 3 3	-
	S	#=	513	1771	2858	3563	4089	4556	4960	5262	5495	5729	5986	6243	6459	54,	
	Time	(min)	31	88	\$	5	176	212	249	582	321	357	393	43	466		
	S	#10	387	1569	2746	3559	4159	4683	5114	5399	5562	5663	5736	5792	5836		
Test 1	Time	(min)	88	ध	₽	137	173	508	246	282	318	354	330	427	463		
HD,		S #9	460	2065	3669	4783	5636	6385	6972	7332	7549	7703	7817	7903	7970		1
idividual Mf Swatch Values at Sampling Times for HD,	Time	(mim)	25	હ	86	134	170	206	242	279	315	351	387	423	460		
Time		S #8	159	686	2039	2825	3371	3820	4183	4448	4649	4805	4915	4986	5041		1
pling	TIME	(min)	22	88	95	131	167		239	276	312	348	384	420	457		
Sam		S#7	146	1091	2529	4016	5429	6743	7758	8440	8947	9337	9623	9822	9972		
nes at	Time	(min)	19	સ્ટ	88	128		200	236	273	306	345	381	417	454		-
ı Val))	₽ \$	56	88	897	1484	2018	2523	3037	3543	3982	4534	4500	4647	4755	3,0	
watcl	Time	(min)	16	22	8		161	197	g	570	306	342	378	414	451		
MfS		S #5	8	305	824	1364	1847	2290	2703	3047	3282	3455	3618	3747	3833		
idual	Time	(min)	13	64	ജ	122	158	194	230	267	303	339	375	411	448		
Indiv		S #4	=	88 84	928	1599	2176	2714	3188	3536	3790	4051	4370	4636	4784		
Table D-10. In	Тте	(min)	우	46	83	119	155	191	227	264	300	336	372	408	445		
able D		S#3	ន	793	2183	3595	4915	6124	7071	7692	8115	8424	8644	8822	8973	9101	
Ξ	Time	(mim	7	43	8	116	152	188	224	261	297	333	369	405	442	478	
		S \$	9	767	2206	3609	4832	6011	7120	7979	8639	9123	9417	9630	9086	9951	
	Time	(IIIII	4	40	77	113	149	185	221	258	294	330	366	402	439	475	
		∵ ##\$	3	1013	2937	4664	6042	7417	8783	9226	10291	10639	10910	11136	11334	11496	
	Time	(mim)	-	37	74	110	146	182	218	255	291	327	363	388	436	472	
١					1		1										•

 $\overline{\text{Notes}}$:
-In all M_f tables, zero (0) is equivalent to non-detectable (ND).

Air-Permeable SARATOGA™ Hammer Suit vs. HD Liquid (10g/m²) Test 2

Modified Convective Permeation Test at 90 °F and 35% RH, 07/18/03

Table D-11. Individual Swatch Measurements for HD, Test 2

Swatch#	Description	Average Thickness (inches)	Permeation Gell#	Computer Average Flow (ccm)	Pressure Difference, % Inch WC
1	Upper Arm Seam	0.074	5	201	0.103
2	Upper Arm Seam	0.082	12	245	0.103
3	Upper Arm Seam	0.102	9	239	0.116
4	Lower Leg Seam	0.077	4	334	0.105
5	Lower Leg Seam	0.076	3	320	0.108
6	Lower Leg Seam	0.074	8	383	0.106

Notes:

-Swatches consisted of a single layer of fabric and a layer of carbon material, except for swatch #3. One half of swatch #3 was two-layer fabric with the seam as the division.

-Agent beaded up on the surface of the swatch.

1-¹⁵/₁₆-in. swatch Used MINICAMS™ GC/FPD Min. Detection Limit = 0.57ng Total Test Time = 7:59:37 Average Chamber Temperature = 32.0 °C (89.6 °F) Average Manifold Temperature = 31.8 °C (89.2 °F) Average Relative Humidity = 35.7% Average Computer Flow Rate = 287ccm Average Pressure Difference = 0.107 in. WC

Air-Permeable SARATOGATM Hammer Suit vs. HD Liquid (10g/m²) Test 2 Modified Convective Permeation Test at 90 °F and 35% RH, 07/18/03

Table D-12. Individual M_f Swatch Values at Sampling Times for HD, Test 2

				I MIL DAY		iues at l		I TIME		Time	S
Time	S	Time	S	Time	S	Time	S	Time	S	Time	lant, or all electricate
(min)	#1	(min)	#2	(min)	#3	(min)	#4	(min)	#5	(min)	#6
3	2	6	7	9	7	12	34	15	137	18	350
21	167	24	173	27	100	30	286	33	689	36	1285
39	547	42	529	45	307	48	773	51	1522	54	2460
57	1024	60	966	63	579	66	1359	69	2362	72	3515
75	1505	78	1395	81	862	84	1948	87	3079	90	4330
93	1950	97	1770	100	1125	103	2511	106	3675	109	4961
112	2348	115	2081	118	1366	121	3044	124	4184	127	5484
130	2686	133	2336	136	1587	139	3538	142	4631	145	5937
148	2966	151	2545	154	1790	157	3974	160	5027	163	6335
166	3192	169	2715	172	1978	175	4352	178	5374	181	6691
184	3381	187	2863	190	2155	193	4690	196	5690	199	7010
202	3544	205	2996	208	2325	211	5000	214	5986	217	7308
220	3692	223	3116	226	2490	229	5293	232	6264	235	7587
238	3828	241	3228	244	2649	247	5570	250	6532	253	7845
256	3956	259	3334	262	2805	265	5842	268	6791	271	8085
274	4075	278	3435	281	2958	284	6114	287	7043	290	8305
293	4188	296	3527	299	3106	302	6372	305	7285	308	8509
311	4296	314	3614	317	3249	320	6595	323	7503	326	8698
329	4397	332	3693	335	3386	338	6782	341	7695	344	8869
347	4489	350	3765	353	3511	356	6944	359	7863	362	9020
365	4574	368	3827	371	3625	374	7084	377	8005	380	9153
383	4650	386	3881	389	3725	392	7205	395	8124	398	9270
401	4718	404	3927	407	3809	410	7306	413	8218	416	9363
419	4776	422	3967	425	3878	428	7386	431	8291	434	9435
437	4828	440	4000	443	3933	446	7451	449	8348	452	9493
455	4873	459	4028	462	3976	465	7503	468	8396	471	9542
474	4909	477	4052	480	4009		11 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Notes:

⁻In all M_f tables, zero (0) is equivalent to non-detectable (ND).

Air-Permeable SARATOGATM Hammer Suit vs. GB Liquid (10g/m²) Test 1 Modified Convective Permeation Test at 90 °F and 35% RH, 07/23/03

Table D-13. Individual Swatch Measurements for GB, Test 1

Swatch #	Description	Average Thickness (Inches)	Permeation Cell#	Computer Average Flow (ccm)	Pressure Difference (inch WC)
1	Thigh	0.045	3	376	0.099
2	Thigh	0.045	1	495	0.100
3	Thigh	0.045	11	429	0.101
4	Chest	0.044	8	233	0.105
5	Chest	0.044	7	210	0.101
6	Chest	0.045	2	237	0.102
8	Hood-Seam	0.071	10	174	0.102
9	Hood-Seam	0.062	6	249	0.099
10	Crotch-Seam	0.114	4	299	0.105
12	Crotch-No Seam	0.045	5	452	0.101

Notes:

1-¹⁵/₁₆-in. swatch Used MINICAMSTM GC/FPD Min. Detection Limit = 0.57 ng Total Test Time = 7:58:42 Average Chamber Temperature = 32.1 °C (89.8 °F) Average Manifold Temperature = 31.8 °C (89.2 °F) Average Relative Humidity = 35.6% Average Computer Flow Rate = 315 ccm Average Pressure Difference = 0.102 in. WC

⁻Swatches consisted of a single layer of fabric and a layer of carbon material, except for both of the crotch-seam swatches. They had two layers of fabric on approximately half of the swatch. The seam was the division of one or two layers of fabric. Swatches #7 and 11 were not tested due to flow errors. Swatch #7 was a hood-seam; swatch #11 was a crotch-seam. These were tested at another time.

⁻Agent beaded up on the surface of the swatches.

Modified Convective Permeation Test at 90 °F and 35% RH, 07/23/03 Air-Permeable SARATOGATM Hammer Suit vs. GB Liquid (10g/m²) Test 1

(min) 28 28 58 88 1118 149 179 209 299 329 359 389 419 449				Table	D-14.	Table D-14. Individ	dual M	L Swat	tch Val	lues at	Samp	ling Ti	mes fo	r GR.	Test 1				
(min) S#2 (min) S#3 (min) S#4 (min) S#5 (min) S#6 (min) S#8 (min) S#9 (min) S#10 (min) S#3 (min) S#10 Man S#10 Man S#10 Man S#10 Man S#10 S#10 Man S#10 Man S#10		Time		Time				Time		Time		Time		Time		Tima		Tima	The second
3 1223 6 1836 8 694 11 626 13 819 18 4918 21 8057 23 7340 28 33 17439 36 15163 38 4712 41 3730 43 4185 48 15678 51 24908 53 19990 58 63 24401 66 20508 68 6897 71 5744 73 6502 78 19361 81 32107 83 24377 88 123 30208 126 25120 128 8965 131 7777 134 9009 139 22052 141 37234 144 27661 149 154 32344 156 26120 161 8509 164 9977 169 22013 171 38734 174 28694 179 154 32344 156 2610 161 8690 164 9977 <td>S#1</td> <td>(min)</td> <td>S #2</td> <td>(mim)</td> <td>S#3</td> <td>(min)</td> <td>S #4</td> <td>(min)</td> <td>S#5</td> <td>(mim)</td> <td>\$# \$</td> <td>(min)</td> <td>₩ ₩</td> <td>(min)</td> <td></td> <td></td> <td>C #10</td> <td>(min)</td> <td>C #12</td>	S#1	(min)	S #2	(mim)	S#3	(min)	S #4	(min)	S#5	(mim)	\$# \$	(min)	₩ ₩	(min)			C #10	(min)	C #12
33 17439 36 15163 38 4712 41 3730 43 4185 48 15678 51 24908 53 19990 58 63 24401 66 20508 68 6897 71 5744 73 6502 78 19361 81 32107 83 24377 88 123 20208 126 25120 128 8965 131 7777 134 9009 139 22052 141 37234 144 27661 149 154 32344 156 26816 159 9728 161 9977 169 22913 171 38734 174 28694 179 164 39208 126 193 1767 199 1997 169 22913 174 28694 179 184 34230 186 10417 191 9190 194 10854 229 24283 231 174	0	3	1223	9	1836	8	694	1	626	13	819	18	4918	7		23	7340	28	5100
63 24401 66 20508 68 6897 71 5744 73 6502 78 19361 81 32107 83 24377 88 93 27710 96 23126 98 8072 101 6894 103 7903 108 20961 111 35231 113 26317 118 123 30208 126 25120 128 8965 131 7777 134 9009 139 22052 141 37234 144 27661 149 154 32344 156 26816 159 9728 161 9909 139 22052 141 37234 174 2661 179 184 34230 186 28953 1041 191 194 10854 229 24283 231 171 38734 173 2861 173 2631 179 179 179 224 11636 22913 171 38	1321	_	17439	36	15163	38	4712	41	3730	43	4185	48	15678	51	24908	23	19990	228	11735
93 27710 96 23126 98 8072 101 6894 103 7903 108 20961 111 35231 113 26317 118 123 30208 126 25120 128 8965 131 7777 134 9009 139 22052 141 37234 142 27661 149 154 32344 156 26816 159 9728 161 8509 164 9977 169 22052 141 37234 174 28694 179 184 34230 186 28812 161 9190 194 10854 199 23639 201 39971 204 29558 209 214 35920 216 29709 219 11036 221 10400 254 1234 259 24873 371 41876 239 24873 379 359 379 329 378 3274 379 359	9716		24401	99	20508	68	2689	71	5744	73	6502	78	19361	8	32107	83	24377	88	13429
123 30208 126 25120 128 8965 131 7777 134 9009 139 22052 141 37234 144 27661 149 154 32344 156 26816 159 9728 161 8509 164 9977 169 22913 171 38734 174 28694 179 184 34230 186 28323 189 10417 191 9190 194 10854 199 23639 201 39971 204 2958 201 39971 204 2958 229 24283 231 41024 234 3029 239 239 239 239 230 221 9812 224 11636 229 24879 261 41979 264 30992 269 269 269 269 248 30992 269 269 269 269 269 269 269 269 269 269 269	1656	_ [27710	96	23126	98	8072	101	6894	103	7903	T	20961	111	35231	113	26317	118	14576
154 32344 156 26816 159 9728 161 8509 164 9977 169 22913 171 38734 174 28694 179 184 34230 186 28323 189 10417 191 9190 194 10854 199 23639 201 39971 204 2958 209 214 35920 216 29709 219 11036 221 9812 224 11636 229 24283 231 41024 234 30290 239 248 37430 246 30971 249 11597 251 10400 254 12344 259 24283 231 41979 264 239 24284 3740 42871 294 31646 299 239 281 3141 34141 3353 324 3242 329 3242 329 3242 329 3242 329 3242 3242 3242 3242 <td< td=""><td>3172</td><td></td><td>30208</td><td></td><td>25120</td><td>128</td><td>8965</td><td>131</td><td>7777</td><td>134</td><td>6006</td><td>F</td><td>22052</td><td>141</td><td>37234</td><td>144</td><td>27661</td><td>149</td><td>15541</td></td<>	3172		30208		25120	128	8965	131	7777	134	6006	F	22052	141	37234	144	27661	149	15541
184 34230 186 28323 189 10417 191 9190 194 10854 199 23639 201 39971 204 29558 209 214 35920 216 29709 219 11036 221 9812 224 11636 229 24283 231 41024 234 30299 239 244 37430 246 30971 249 11597 251 10400 254 12344 259 24879 261 41979 264 30992 269 274 38839 276 32144 279 12129 281 10957 284 13026 289 25424 291 42871 294 31646 299 334 40216 306 12635 311 11472 314 13680 329 25424 291 44460 354 3294 3294 33338 389 369 35549 3324 32793	4485	\perp	32344	-	26816	159	9728	161	8509	164	2266	1	22913	171	38734	174	28694	179	16418
214 35920 216 29709 219 11036 221 9812 224 11636 229 24283 231 41024 234 30299 239 24 14305 349 26858 381 45185 384 3338 389 339 339 34181 371 12436 349 26401 351 44460 354 3279 359 359 394 43976 396 13561 371 12436 349 36401 351 341	5699		34230	186	28323	Г	10417	191	9190	194	10854	Т	23639	201	39971	204	29558	200	17199
244 37430 246 30971 249 11597 251 10400 254 12344 259 24879 261 41979 264 30992 269 274 38839 276 32144 279 12129 281 10957 284 13026 289 25424 291 42871 294 31646 299 304 40216 306 33259 309 12635 311 11472 314 13680 319 25929 321 43693 324 32242 329 334 41503 336 13612 341 11472 344 14305 349 26401 351 44460 354 3279 359 364 42761 366 35309 13561 371 12436 374 44909 379 26858 381 45185 384 33338 389 394 43976 366 376 471 4699	6805		35920		29709	219	11036	221	9812	224	11636	7-	24283	231	41024	234	30200	230	17037
274 38839 276 32144 279 12129 281 10957 284 13026 289 25424 291 42871 294 31646 299 304 40216 306 33259 309 12635 311 11472 314 13680 319 25929 321 43693 3242 3294 3294 32242 329 32442 329 324460 354 32799 359 32799 359 371 12436 374 14909 379 26858 381 45185 384 33338 389 394 43976 396 36270 399 13992 401 12893 404 15474 409 27296 411 45874 414 33851 419 424 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 46535 444 34787 479	7798		37430	246	30971	249	11597	251	10400	254	12344	1	24870	264	41070	264	30002	260	10627
304 40216 306 33259 309 12635 311 11472 314 13680 319 25929 321 4201 294 31040 299 334 41503 336 34308 339 13112 341 11965 349 26401 351 44460 354 32742 329 364 42761 366 35309 369 13561 371 12436 374 14909 379 26858 381 45185 384 33338 389 394 43976 396 36270 399 13992 401 12893 404 15474 409 27296 411 45874 414 33851 419 424 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 46535 444 34329 449 454 46198 456 38099 459 <td< td=""><td>8743</td><td>L_</td><td>38839</td><td>1</td><td>32144</td><td>279</td><td>12129</td><td>281</td><td>10057</td><td>284</td><td>12026</td><td></td><td>25424</td><td>2 6</td><td>4004</td><td>100</td><td>240.40</td><td>202</td><td>7000</td></td<>	8743	L_	38839	1	32144	279	12129	281	10057	284	12026		25424	2 6	4004	100	240.40	202	7000
334 41503 336 34308 339 13112 341 11965 344 14305 349 26401 351 44460 35242 32242 3234 364 42761 366 35309 369 13561 371 12436 374 14909 379 26858 381 45185 384 33338 389 394 43976 396 36270 399 13992 401 12893 404 15474 409 27296 411 45874 414 33851 419 424 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 46535 444 33851 449 454 46198 456 38099 459 14815 461 16535 469 28106 471 47867 479 479	9661	L_	40216		33259	T	12635	311	11472	314	13680	\top	25020	224	42602		01040	667	19281
364 42761 366 35309 369 13561 371 12436 374 14909 379 26858 381 45185 384 33338 389 394 43976 396 36270 399 13992 401 12893 404 15474 409 27296 411 45874 414 33851 419 424 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 46535 444 34329 449 454 46198 456 38099 459 14815 461 13772 464 16535 469 28106 471 47165 474 34787 479	0545		41503	336	34308	Т	13112	341	11065	344	14305	T	2505	170	44460		37770	329	18909
394 43976 396 36270 399 13992 401 12893 404 15474 409 27296 411 45874 414 33851 419 424 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 46535 444 34329 449 454 46198 456 38099 459 14815 461 13772 464 16535 469 28106 471 47165 474 34787 479	1398	L.	42761		35309	360	13561	274	10/36	27.6	7 40 5	27.0	2000	3	2017	900	927.39	900	40207
424 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 414 33851 419 454 45107 426 37203 429 14415 431 13337 434 16017 439 27710 441 46535 444 34329 449 454 46198 456 38099 459 14815 461 13772 464 16535 469 28106 471 4746 479 479	2241	L	43976		36270	300	13002	5 5	12002	100	14303	Т	20007	8	45185	384	33338	388	21092
454 46198 456 38099 459 14815 461 13772 464 16535 469 28106 471 47165 474 34329 479	2070	┸	45407		2700	Т	7000	2	12030	5	4/4/	П	087/7	411	428/4	414	33851	419	21680
454 46198 456 38099 459 14815 461 13772 464 16535 469 28106 471 47165 474 34787 479		\perp	10104	470	37.203	\neg	14415	431	13337	434	16017		27710	441	46535	444	34329	449	22229
	3207		46198	456	38099	459	14815	461	13772	464	16535		28106	471	47165	474	34787	479	22749

-In all M_f tables, zero (0) is equivalent to non-detectable (ND).

Air-Permeable SARATOGA™ Hammer Suit vs. GB Liquid (10g/m²) Test 2

Modified Convective Permeation Test at 90 °F and 35% RH, 07/24/03

Table D-15. Individual Swatch Measurements for GB, Test 2

Swatch #	Description	Average Thickness (inches)	Permeation Celi#	Computer Average Flow (ccm)	Pressure Difference (inch WC)
1	Upper Arm Seam	0.072	11	221	0.102
2	Upper Arm Seam	0.083	2	280	0.102
3	Upper Arm Seam	0.084	5	269	0.104
4	Upper Leg Seam	0.075	6	414	0.107
5	Upper Leg Seam	0.105	10	240	0.102
- 6	Upper Leg Seam	0.111	4	333	0.101
7	Hood-Seam	0.067	9	251	0.108
8	Crotch-Seam	0.116	12	424	0.099

Notes:

-Swatches consisted of a single layer of fabric and a layer of carbon material, except for swatches #3, 5, 6, and 8. About one half of swatches #5, 6, and 8 have two layers of fabric, with the seam as the division. A very small portion of swatch #3 has two layers of fabric.

-Agent beaded up on the surface of the swatch.

$1^{-15}/_{16}$ -in. swatch
Used MINICAMS TM GC/FPD
Min. Detection Limit = 0.57ng
Total Test Time = $7.57.46$

Average Chamber Temperature = 32.0 °C (89.6 °F) Average Manifold Temperature = 31.7 °C (89.1 °F)

Average Relative Humidity = 35.2% Average Computer Flow Rate = 304 ccm Average Pressure Difference = 0.103 in. WC

Air-Permeable SARATOGATM Hammer Suit vs. GB Liquid (10g/m²) Test 2 Modified Convective Permeation Test at 90 °F and 35% RH, 07/24/03

Table D-16. Individual Mf Swatch Values at Sampling Times for GB, Test 2

	1. 66 17.	1C D-1	U. AII.	uiviuu		Swate					1	-	1 33878 3	11.00	7 7 7 7 7 1
Time		Time	A 111.	Time		Time		Time		Time		Time		Time	
(min)	S #1	(min)	S #2	(min)	S #3	(min)	S #4	(min)	S#5	(min)	S #6	(min)	S #7	(min)	S#8
2	394	5	981	7	1042	10	1354	12	2218	15	4091	18	3450	20	1844
23	6651	25	8576	28	6418	30	5855	33	8011	35	12649	38	10590	40	4618
43	11370	45	14383	48	10631	50	8431	53_	11231	55	16969	58	15794	60	5929
63	14140	65	18143	68	13352	70	9652	73	12772	75	18904	78	19003	80	6553
83	15889	85	20598	88	15116	90	10372	93	13699	95	20096	98	20909	100	6955
103	17086	105	22166	108	16280	110	10891	113	14356	115	20928	118	22155	120	7236
123	18003	125	23426	128	17140	130	11302	133	14880	135	21588	138	23140	140	7458
143	18723	145	24413	148	17807	150	11642	153	15325	155	22142	158	23953	160	7645
163	19325	165	25221	168	18346	170	11938	173	15723	175	22618	178	24619	180	7812
183	19856	185	25936	188	18832	190	12205	193	16082	195	23063	198	25194	200	7959
203	20328	205	26577	208	19260	210	12453	213	16394	215	23469	218	25693	220	8091
223	20748	225	27168	228	19627	230	12679	233	16681	235	23836	238	26128	240	8210
243	21143	245	27676	248	19953	250	12887	253	16959	255	24174	258	26523	260	8322
263	21511	265	28144	268	20243	270	13084	273	17224	275	24490	278	26885	280	8428
283	21843	285	28587	288	20515	290	13265	293	17467	295	24791	298	27231	300	8528
303	22160	305	28994	308	20768	310	13435	313	17694	315	25074	318	27554	320	8624
323	22458	325	29371	328	20998	330	13600	333	17913	335	25350	338	27867	340	8714
343	22734	345	29728	348	21215	350	13759	353	18122	355	25619	358	28167	360	8801
363	23009	365	30075	368	21421	370	13912	373	18324	375	25868	378	28442	380	8885
383	23273	385	30403	388	21620	390	14061	393	18516	395	26104	398	28707	400	8966
403	23517	405	30711	408	21812	410	14208	413	18699	415	26335	418	28965	420	9043
423	23756	425	31015	428	21997	430	14350	433	18883	435	26560	438	29218	440	9119
443	23993	445	31320	448	22173	450	14484	453	19063	455	26780	458	29462	460	9193
463	24218	465	31609	468	22340	470	14615	473	19237	475	26999	478	29697		

Notes:

⁻In all M_f tables, zero (0) is equivalent to non-detectable (ND).

APPENDIX E
PROTECTION FACTOR TEST DATA

Table E. Aerosol Protection Factor Test Data

						т	т	т—		T	_	1		т	т			_		7	F	г	т	1	т	_	1		T	ι	т-	Т	т-
	EXHCSB	2.14	2.20	1.99	3.13	1.86	2.08	1.71	1.86	1.89	2.00	2.03	1.66	2.01	2.09	1.90	1.73	2.14	2.72	2.54	2.47	3.01	2.71	2.27	2.40	1.53	1.80	2:00	2.40	2.45	2.65	2.93	2.22
-0000	EXHCS/	2.70	2.63	3.30	3.75	3.89	3.09	2.09	1.88	2.34	2.30	2.59	2:32	2.10	2.49	2.08	1.96	3.13	3.26	3.36	2.46	3.34	3.28	2.74	2.56	1.86	2.32	2.44	3.32	2.78	3.83	3.28	2.67
	EXHCS0	2.79	2.66	3.07	3.21	3.45	2.78	2.04	2.56	2.55	2.63	3.06	2.74	2.51	2.63	2.10	2.06	2.91	3.49	3.91	3.26	3.17	3.13	3.21	2.62	2.03	2.83	2.33	3.11	2.59	3.13	3.53	3.08
10000	EARCSS	2.36	2.45	2.62	3.02	2.24	2.39	1.70	2.13	1.79	2.20	2.15	2.01	2.28	2.61	2.15	1.81	2.67	3.25	3.02	2.56	2.34	2.64	3.05	2.66	1.97	2.26	2.16	2.64	2.54	2.97	2.71	3.09
1	EXHCS	2.53	2.57	2.75	3.90	2.77	3.03	2.03	2.41	2.20	2.47	2.77	2.54	2.64	3.15	2.42	2.18	2.64	3.33	3.12	2.68	3.22	3.13	2.93	2.68	2.08	3.11	2.66	3.01	3.16	3.26	3.56	3.50
Aerosoi Protection Factor Lest Data	EAHCSS	2.84	3.46	2.76	4.08	3.06	3.11	2.03	3.00	2.35	2.70	2.85	2.43	2.85	3.22	2.61	2.35	3.55	4.93	3.55	3.92	4.29	3.91	3.70	3.23	2.40	2.89	2.50	3.65	3.85	4.26	4.07	3.71
Factor	EAHUSZ	2.00	2.48	1.96	2.80	2.25	2.18	1.85	2.12	2.04	2.12	2.47	2.21	2.25	2.47	2.10	1.77	2.40	2.85	2.82	2.59	2.61	2.26	2.36	2.09	2.15	2.49	2.62	2.73	3.15	3.30	2.67	2.40
Lorection	CARCO	2.12	2.55	1.98	3.13	1.95	2.71	1.69	1.93	1.92	2.14	1.93	2.10	1.89	2.53	1.75	2.19	2.65	3.21	3.02	3.05	2.88	3.26	2.45	2.18	2.69	2.70	2.49	2.95	3.38	4.83	2.41	2.81
erosoi Fi	410	2.40	2.59	2.46	3.32	2.52	2.61	1.88	2.18	2.11	2.30	2.42	2.20	2.27	2.60	2.11	1.98	2.70	3.29	3.12	2.81	3.02	2.97	2.77	2.51	2.04	2.48	2.38	2.93	2:92	3.41	3.06	2.86
able E. A	EU	SUIT 5	SUIT 5	SUIT 7	SUIT 7	SUIT 6	SUIT6	SUIT 8	SUIT 8	SUIT 1	SUIT 1	SUIT 2	SUIT 2	SUIT 3	SUIT 3	SUIT 4	SUIT 4	SUIT 5	SUIT 5	SUIT 7	SUIT 7	SUIT 6	SUIT 6	SUIT 8	SUIT 8	SUIT 1	SUIT 1	SUIT 2	SUIT 2	SUIT 3	SUIT3	SUIT 4	SUIT 4
E T	JAE -	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	1	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2
Cite ient	SUBSECT	-	-	2	2	က	တ	4	4	2	5	9	9	7	7	80	æ	6	6	9	9	=	=	12	42	13	13	44	4	5	5	9	9
MACK	NOTE:	¥	M	M13	M13	M2	M2	M11	M11	M14	M14	S	હ	\$	\$	88	W8	M13	M13	M14	M14	St	St	M2	M2	W	WH.	¥	¥	82	æ	8	M8
		09:17:06	09:35:02	09:17:08	09:35:04	09:17:09	09:35:05	09:17:10	09:32:06	10:04:23	10:22:22	10:04:24	10:22:23	10:04:25	10:22:24	10:04:26	10:22:26	10:00:29	10:18:48	10:00:30	10:18:49	10:00:31	10:18:50	10:00:32	10:18:51	10:47:29	11:06:09	10:47:30	11:06:10	10:47:31	11:06:11	10:47:32	11:06:12
112	1	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003	8/16/2003